L15: Tests with two-sided alternative hypotheses

1. Initial $\phi(X)$

For H_0 : $\theta = \theta_0$ versus H_a : $\theta \neq \theta_0$ seeking desired properties $\alpha = \beta_{\phi}(\theta_0)$ and $[\beta_{\phi}(\theta_0)]'_{\theta} = 0$ for $\phi(X)$, with pdf/pmf $f(x, \theta)$ for sample X and $\theta_1 \neq \theta_0$ let

$$\int_{x} \phi(x) f(x; \theta_{0}) dx = \alpha, \quad \int_{x} \phi(X) f'_{\theta}(x; \theta_{0}) dx = 0 \text{ and}$$

$$\phi(X) = \begin{cases} 1 \quad f(X; \theta_{1}) - k_{1} f(X : \theta_{0}) - k_{2} f'_{\theta}(X; \theta_{0}) > 0 \\ r \quad f(X; \theta_{1}) - k_{1} f(X : \theta_{0}) - k_{2} f'_{\theta}(X; \theta_{0}) = 0 \\ 0 \quad f(X; \theta_{1}) - k_{1} f(X : \theta_{0}) - k_{2} f'_{\theta}(X; \theta_{0}) < 0 \end{cases}$$

Then by generalized Neyman-Pearson lemma

$$\int_{x} \psi(x) f(x; \theta_0) \, dx \le \alpha \text{ and } \int_{x} \psi(x) f'_{\theta}(x; \theta_0) \, dx \le 0 \text{ imply } E_{\theta_1}(\psi) \le E_{\theta_1}(\phi).$$

- 2. Modifications
 - (1) An assumption and using sufficient statistic T

Assume $f(x; \theta) = \exp[p(\theta) + q(x) + \theta T(x)]$ is the pdf/pmf for sample X. Then T is sufficient for θ and $f(t; \theta) = a(\theta)b(t)\exp(\theta t)$ where $a(\theta) > 0$ and b(t) > 0. Because all information on θ is contained in T, so X can be replaced by T. Thus

$$\phi(T) = \begin{cases} 1 & f(T; \theta_1) - k_1 f(T : \theta_0) - k_2 f'_{\theta}(T; \theta_0) > 0 \\ r & f(T; \theta_1) - k_1 f(T : \theta_0) - k_2 f'_{\theta}(T; \theta_0) = 0 \\ 0 & f(T; \theta_1) - k_1 f(T : \theta_0) - k_2 f'_{\theta}(T; \theta_0) < 0 \end{cases}$$

where $\int_t \phi(t) f(t; \theta_0) dt = \alpha$ and $\int_t \phi(t) f'_{\theta}(t; \theta_0) dt = 0$. (2) Replacing $f(T; \theta_1) - k_1 f(T; \theta_0) - k_2 f'_{\theta}(T; \theta_0)$

$$g_{1}(t; \theta_{0}, \theta_{1}) = f(t; \theta_{1}) - k_{1}f(t; \theta_{0}) - k_{2}f_{\theta}'(t; \theta_{0}) \\ = a(\theta_{1})b(t)e^{\theta_{1}t} - k_{1}a(\theta_{0})b(t)e^{\theta_{0}t} - k_{2}[a(\theta_{0})b(t)e^{\theta_{0}t}t + a'(\theta_{0})b(t)e^{\theta_{0}t}] \\ \text{So } g_{1}(t; \theta_{0}, \theta_{1}) > (=<)0 \iff g_{2}(t; \theta_{0}, \theta_{1}) = \frac{a(\theta_{1})}{a(\theta_{0})}e^{(\theta_{1}-\theta_{0})t} - k_{1} - k_{2}\left(t + \frac{a'(\theta_{0})}{a(\theta_{0})}\right) > (=<)0. \\ \text{But } [g_{2}]_{t}' = \frac{a(\theta_{1})}{a(\theta_{0})}(\theta_{1} - \theta_{0})e^{(\theta_{1}-\theta_{0})t} - k_{2} \text{ and } [g_{2}]_{t}'' = \frac{a(\theta_{1})}{a(\theta_{0})}(\theta_{1} - \theta_{0})^{2}e^{(\theta_{1}-\theta_{0})t} > 0. \end{cases}$$

Thus g_1 is a convex function of t. Hence there exist $c_1(\theta_1)$ and $c_2(\theta_1)$ such that

$$\begin{cases} f(T; \theta_1) - k_1 f(T: \theta_0) - k_2 f'_{\theta}(T; \theta_0) > 0\\ f(T; \theta_1) - k_1 f(T: \theta_0) - k_2 f'_{\theta}(T; \theta_0) = 0\\ f(T; \theta_1) - k_1 f(T: \theta_0) - k_2 f'_{\theta}(T; \theta_0) < 0 \end{cases} \iff \begin{cases} T < c_1(\theta_1) & \text{or} \quad T > c_2(\theta_1)\\ T = c_1(\theta_1) & \text{or} \quad T = c_2(\theta_1)\\ c_1(\theta_1) < & T \quad < c_2(\theta_1) \end{cases}$$

So

$$\phi(T) = \begin{cases} 1 & T < c_1(\theta_1) & \text{or} & T > c_2(\theta_1) \\ r & T = c_1(\theta_1) & \text{or} & T = c_2(\theta_1) \\ 0 & c_1(\theta_1) < & T & < c_2(\theta_1) \end{cases}$$

where $\int_t \phi(t) f(t; \theta_0) dt = \alpha$ and $\int_t \phi(t) f'_{\theta}(t; \theta_0) dt = 0$.

(3) $\phi(T)$ is invariant over $\theta_1 \neq \theta_0$

 $c_1(\theta_1 \text{ and } c_2(\theta_2) \text{ in } \phi(T) \text{ are determined by}$

$$\int_t \phi(t) f(t; \theta_0) dt = \alpha \text{ and } \int_t \phi(t) f'_{\theta}(t; \theta_0) dt = 0.$$

But $f(t; \theta_0)$ and $f'_{\theta}(t; \theta_0)$ are invariant over all $\theta_1 \neq \theta_0$. Hence $c_1(\theta_1)$ and $c_2(\theta_1)$ are free of θ_1 . Thus

$$\phi(T) = \begin{cases} 1 & T < c_1 & \text{or} & T > c_2 \\ r & T = c_1 & \text{or} & T = c_2 \\ 0 & c_1 < & T & < c_2 \end{cases}$$

where $\int_t \phi(t) f(t; \theta_0) dt = \alpha$ and $\int_t \phi(t) f'_{\theta}(t; \theta_0) dt = 0$

3. UMPs

(1) An UMP in test class C

For H_0 : $\theta = \theta_0$ versus H_a : $\theta \neq \theta_0$ suppose the pdf/pmf for sample X is $f(x; \theta) = \exp[p(\theta) + q(x) + \theta t(x)]$. Let \mathcal{C} be $\mathcal{C} = \{\psi : E_{\theta_0}(\psi) \leq \alpha \text{ and } [E_{\theta_0}(\psi)]_{\theta}' = 0\}$. Then $\phi(T)$ in (3) of 2 is UMP test in \mathcal{C} .

Proof. Fist $\phi(T)$ is in \mathcal{C} .

Secondly if $\psi(T) \in \mathcal{C}$, by generalized Neyman-Pearson lemma

$$E_{\theta}(\psi) \leq E_{\theta}(\psi)$$
 for all $\theta \neq \theta_0$.

(2) α -level unbiased UMP

For H_0 : $\theta = \theta_0$ versus H_a : $\theta \neq \theta_0$ suppose the pdf/pmf for sample X is $f(x; \theta) = \exp[p(\theta) + q(x) + \theta t(x)]$. Then $\phi(T)$ in (3) of 2 is UMP test in the class of all α -level unbiased tests with differentiable mean of critical functions.

Proof. First $\phi(T)$ is an α -level test.

Let $\psi \equiv \alpha$. Then $\psi \in \mathcal{C}$ in (1). But ϕ is UMP in \mathcal{C} . Thus

$$E_{\theta_0}(\phi) = \alpha = E_{\theta}(\psi) \leq E_{\theta}(\phi)$$
 for all $\theta \neq \theta_0$.

So ϕ is also an UB test. Hence ϕ is an α -level unbiased test. If ψ is also α -level UB test with differentiable mean, then

$$\int_t \psi(t) f(t; \theta_0) dt \le \alpha \text{ and } \int_t \psi(t) f'_{\theta}(t; \theta_0) dt = 0.$$

Therefore $\psi \in \mathcal{C}$, So

$$E_{\theta}(\psi) \leq E_{\theta}(\phi)$$
 for all $\theta \neq \theta_0$.